Answer:
[tex]sin(sin^{-1}(x) + cos^{-1}(y)) = x y + \sqrt{1 - y^2} \sqrt{1- x^2}[/tex]
Step-by-step explanation:
Given
[tex]sin(sin^{-1}(x) + cos^{-1}(y))[/tex]
Let's define
[tex]\alpha = sin^{-1}(x)[/tex]
[tex]\beta = cos^{-1}(y)[/tex]
Replacing
[tex]sin(\alpha + \beta)[/tex]
[tex]sin(\alpha) cos(\beta) + sin(\beta) cos(\alpha)[/tex]
But
[tex]sin(\alpha) = sin(sin^{-1}(x))=x[/tex]
[tex]cos(\beta) = cos(cos^{-1}(y))=y[/tex]
From trigonometric identity
[tex]sin^2(\beta) + cos^2(\beta) = 1[/tex]
[tex]sin(\beta) = \sqrt{1 - cos^2(\beta)} = \sqrt{1 - y^2}[/tex]
[tex]sin^2(\alpha) + cos^2(\alpha) = 1[/tex]
[tex]cos(\alpha) = \sqrt{1 - sin^2(\alpha)} = \sqrt{1- x^2}[/tex]
Replacing
[tex]sin(sin^{-1}(x) + cos^-1 (y)) = x y + \sqrt{1 - y^2} \sqrt{1- x^2}[/tex]